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Critical and paramagnetic spin dynamics in an 
antiferromagnetically coupled Heisenberg magnet: results for 
RbMhFS 

A Cuccolit, S W Lovesey: and V Tognettit 
t Depamnent of Physics Universily of Florence, L E  Fermi 2,1-50125, Italy 
$ DRAL Rutherford Appleton Laboratory, Oxfordshire OX1 1 CQX, UK 

Received 6 June 1994 

Abstract Results are pvided’for the spin-spin response function of a ulree-dimensional, 
antifemoma&netically coupled Heisenberg magnet covering a range of temporams horn the 
critical temperature to deep m the panmag~etiic phase. The wave vectors considered span the 
Brillouin zone. D y i n g  rates are given at ule zone ce& and the antifemwetieordering 
wave vector. w, mgefher wifh copions numerical results for the W1 response function. The 
calculations are based on the non-linear, integd4fFerential equations obtained from so-called 
coupled-mode theory. In a eonfrontation beween experimental and theoretical flndings for 
RbMnF3 nearly all afpects have a positive outcome. The main emption is found at T. for wave 
vectors close to w. Here, the measured response comprises three distinct components, reasonably 
ascribed m diffusive and oscillatory collective processes. In the corresponding predictions, the 
difhsive component is conspicuously missing. A less pronounced discrepancy if found at the 
antifmomagnetic zone boundary where. once again, there is more shuchlrr in the obselved 
spec”  than in the calculated one. 

1. Introduction 

Over the past few decades, studies of the time-dependent properties of spin systems have 
played a significant role in the development of the current sophisticated theory of dynamical 
processes in condensed matter. Up to the end of the 1960s, theoretical methods for spin 
systems tended to depend on the use of frequency moments, following very early ideas 
from Van Vleck and De Gennes, among others (for a review of this work see, for example, 
Marshall and Lowde 1968). These methods are not reliable at the critical temperature, 
where an infinite number of degrees of freedom are responsible for non-hivial features in 
the dynamics. Seminal work on this aspect of spin dynamics was reported by Wegner 
(1969), Rksibois and DeJxener (1969) and Kawasaki (1970). It is now recognized, largely 
through the work of Hubbard (1971). that these developments all lead to the same system 
of closed non-linear equations for the time-dependent and wave-vector-dependent spin-spin 
response function. Today, the equations are often referred to as the coupled-mode theory 
of the dynamical properties of spin systems. 

Appropriate variants of coupled-mode theory have been successti~lly used to investigate 
properties of other highly correlated systems. Notable examples are. models of the glass 
transition, and localization in the Anderson model. It is interesting to note in studies of fluids 
a strong similarity between the coupled-mode theory for fluctuations close to equilibrium 
and the dirednteraction theory of turbulence when the need for separate equations for the 
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response and propagator are relaxed, i.e. the theory is reduced to the description of small 
fluctuations close to thermal equilibrium. 

Applied to critical spin dynamics, coupled-mode theory is in accord with two other 
powerful approaches. One, scaling theory, is a set of postulates that lead to predictions in 
the critical region from a knowledge of various properties in the hydrodynamical region. 
The renormalization-group method provides asymptotic properties of the spin-correlation 
function and explicit results for some critical exponents. Even though this method does not 
provide closed equations for the spin-response function, it is particularly valuable since it 
alone is a systematic, perturbative approach to critical phenomena in spin systems, and other 
models which display a continuous phase transition. Results derived for spin systems using 
dynamic-scaling arguments and the renormalization-group method are gathered, together 
with copious references, by Privman ei ai (1990). 

Although the pioneers of the coupled-mode approach concentrated attention on the 
critical properties of spin systems, there is a body of evidence to the effect that it provides 
an unrivalled account of paramagnetic fluctuations of short and long wavelengths (Hubbard 
1971, Cuccoli ef ai 1989, 1990, Westhead et ai 1991). Perhaps the most recent example 
of the reliabilie of coupled-mode theory outside the critical region is in its application 
to a spin chain at infinite temperature (Lovesey and Balcar 1994). In this case, the theory 
provides insight to non-hydrodynamical behaviour observed in data from extensive computer 
simulations (Srivastava et a1 1994). 

In this paper we continue the investigation of coupled-mode theory applied to spin 
systems by providing the first comprehensive study of an antiferromagnetically coupled 
Heisenberg magnet. Previous work on this system has focused on the critical and 
hydrodynamic limits (Wegner 1969, Huber and Krueger 1970, Bagnuls and Joukoff-Piette 
1975). Here, we survey the spin-spin response function at the critical temperature, Tc, 
for all wave vectors in the Brillouin zone. In particular, at T, we predict the behaviour 
of the van Hove response function, S(k, U), for the three special wave vectors, le, near 
the chemical mne centre, the antiferromagnetic zone boundary, at which in the condensed 
phase the linear spin-wave dispersion achieves its maximum value, and the antiferromagnetic 
ordering wave vector, w. Above T,, we show, starting deep in the paramagnetic phase and 
approaching Tc, how developing antiferromagnetic correlations manifest themselves in the 
timedependent spin fluctuations. A combination of numerical and analytical methods of 
analysis are employed, the latter is used to demonstrate that, for the antiferromagnetically 
coupled system, coupled-mode theory is consistent with results derived with dynamic-scaling 
arguments and the renormalization-group method. 

Where possible, theoretical results are compared with experimental data for S(k, w )  
obtained on RbMnFs, using inelastic neutron scattering, by Tucciarone et al (1971% b). 
By and large, agreement between experimental and theoretical results is strikingly good. 
However, at Tc and for k in the vicinity of the antiferromagnetic ordering wave there is an 
obvious disagreement: the experimental data for S(k, w )  shows a threepeaked smcture, 
namely, a dentral (w = 0) diffusive mode and two side peaks attributed to collective spin 
oscillations, albeit heavily damped oscillations, while theoretical results for the appropriate 
wave vectors show only two collective mode peaks. The latter feature is consistent with 
results reported hy Wegner (1969), independently confirmed by Hubbard (1972 private 
communication). Here, we provide a more extensive picture of the disagreement between 
experimental and theoretical data. Since, to the best of our knowledge, this is the only 
example of its kind there is a case for new experiments; progess over the past two decades 
with neutron sources, instrumentation, and data analysis methods probably mean that data 
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for S(k, o) obtained by Tucciarone et al (1971a, b) can be improved on (exceptional- 
quality data can be obtained at k - w because there is next-to-no nuclear Bragg scattering 
contaminating the magnetic signal). 

The next two sections describe the Heisenberg spin model and the corresponding 
coupled-mode theory (a detailed derivation of the theory and some of its properties is 
provided by Lovesey 1986 and Cuccoli et a1 1989). Decay rates neaf Tc, for the critical and 
hydrodynamical regions, are derived in section 4. the findings demonstrate that coupled- 
mode theory is consistent with dynamic-scaling arguments, and provide useful insight into 
the numerical results given in the subsequent two sections. 

2. Model 

Spin operators S, are placed on a lattice with N sites labelled by the index a. The spins 
interact through a Heisenberg interaction of strength J ,  so the model Hamiltonian is 

where the sum is over all nearest-neighbour pairs on the lattice. 
We will study the time development of spatial Fourier components S(k)  defined through 

The isothermal susceptibility is 

Here, (,) denotes a Kubp relaxation function; for classical variables ( A ,  B )  = ( ( A B ) / T )  
where the angular brackets denote a thermal average, and T is the temperature (!& = Fa = 1). 
n e  dynamical properties of (2.1) are studied in terms of the normalized relaxation function, 

F ( k  0 = fW(k t ) ,  - S ( k ) ) / ~ ( k )  (2.4) 

where S(k, t )  is the standard Heisenberg time-dependent operator. The spectrum of neutrons 
inelastically scattered by spin fluctuations is proportional to 

m 

S(k, w)  = (I/%) dt exp(-iwt)F(k, t). (2.5) 

In the context of neutron scattering, o is the energy transferred from the primary beam 
to the spin fluctuations. The concomitant change in the wave vector of the neutrons is 
k = w + q, where w is an antiferromagnetic-ordering wave vector. 
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3. Coupled-mode theory 

In view of the fact that coupled-mode theory for spin systems has recently been reviewed, 
we will provide in this section no more material beyond that required to define notation. 

Coupled-mode theory is a closed set of equations for F(k, t).  The latter is determined 
by 

and the so-called memory function, K ( k ,  t), is approximated by 

K ( k  t )  = ( ~ T / X ( ~ ) ) Z ( Y P - ~  - YP}F@, OF@ - k. t)/(po + ~ p ) .  (3.2) 

Here yk is a geometric factor that depends on the point group symmetry of the lattice; for 
a simple cubic lattice with a cell length 

P 

M = j(COS(aok,) + COS(QkJ + C0S(Qkz)) = 1 - p2k2 + . . . 
The quantity p~ varies with temperature. In fact, the temperature scale is determined by 
the spherical model of spin correlations, namely 

(2JW + 1)/3Tf = ( 1 / W   PO - ~ p ) - ’  =  PO) (3.3) 

in which r is the number of nearest neighbours (r = 6,  SC), and the integral on the right-hand 
side is the standard extended Watson integral. 

P 

For a simple cubic lattice, the critical temperature, T,, satisfies 

4JS(S+ I ) /T ,=  1.5164. (3.4) 

The spherical model susceptibility is 

x(k)  = { N / 2 r J ( p o  + Y k ) } .  (3.5) 

In the key equations (3.1). (3.2) and (3.5) the wave-vector variables p and k are general 
wave vectors in the Brillouin zone for the reciprocal lattice of the chemical structure. 

As the critical temperature is approached from above, po --t 1, and the susceptibility 
has a maximum at the antiferromagnetic-ordering wave vector, w, for which yw = - 1 .  
Hence, for (po - 1) <( 1 we expand the geometric factor yh in the susceptibility about w 
using the small-argument expansion, and find an Omstein-&mike form 

X(k) = { N / 2 r J p 2 ( K 2 + 4 2 ) }  (3.6) 

in which the inverse correlation length, K ,  satisfies 

P2K2 (Po - 1) (3.7) 

and q is measured relative to w. For the spherical model, (3.7) leads to K - (T - T,)” 
where the critical exponent U = 1 .  
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4. Decay rates 

For temperatures very close to Z, such that ,OK << 1, and very small wave vectors, the 
spin relaxation function F(k,  t) is expected to approach an exponential function of time for 
sufficiently long times. The associated decay rates can be estimated from equation (3.2) for 
the memory function. 

To this end, in (3.2) we shift the wave vector p in the summation by an amount w, and 
use the identity yww = -yp One finds 

K ( k  t )  = (Z/X(~)) ~ ( Y P  - f i - p ] F b  + (4.1) 

In the limit (PO - 1) <( 1, the denominator in the kernel emphasizes the region where 
pp <( 1, so it is appropriate to expand all functions in p. If the decay rates near k = 0 and 
k = w are denoted by ro and r, respectively, we obtain from (4.1) evaluated in the limit 
k + 0, 

W(k - w - P, f ) / ( @ o  - ~ p ) .  
P 

r(k) = ( A / 2 ) ~ 2 ~ ~ 2 d ~ / ( ~ ( ~ ) ( ~ 2  + P')) .  (4.2) 

Here, the (non-universal) material constant 

A = (4TJ~Wo/X2) (4.3) 
where uo is the volume of the chemical unit cell. It is prudent to express the decay rates in 
terms of a dimensionless parameter 6' = (k/K); let 

ro = k2(A/K)1'2ho(6') 
and, near the ordering vector where 6' = (Q/K), 

r(q) = K3/2(1 + eZ)A112h(e). (4.4) 
From (4.2) we obtain the following integal equations for the dimensionless functions h(0) 
and ho(0): 

If we apply (4.1) to the case where IC is in the vicinity of w, i.e. q -+ 0, 

(4.6) 

The pair of equations (4.5) and (4.6) determine the functions ho(B) and h(6'). 
In the critical limit, 6' + CO, 

row = r(9) = Q 3 / 2 ~ 1 / 2 .  (4.7) 
From this result it follows that the dynamic critical exponent z = ?j. In the opposite, 
hydrodynamical limit, B + 0, and it can be shown that ho(6') and k(6') tend to constant 
values determined by (4.5) and (4.6) evaluated with 6' = 0; 

ro(k) = 0.553kZ(A/K)''2 (4.8) 
and 

r(q) = 0.711A'/2~3/2(1 'r (q/K)'). 

Hence, r(0) decreases as the critical temperature is approached with a power-law behaviour 
(T - T,)'". On the other hand, ro(k) increases with decreasing temperature with a power 
law (T - Tc)-y/z. The decrease of r(0) as T approaches T, is expected since w is a Bragg 
position for the magnetic condensate. 
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5. Numerical results 

The numerical method for the solution of the coupled equations (3.1) and (3.2) is described 
by Cuccoli et a1 (1989). Here, we provide results for the response function (2.5) for several 
different temperatures. All the results are for a nearest-neighbour exchange model, defined 
by (Z.l), in which the spins are arranged on a simple cubic lattice with a cell length ao. 

T-3.15 T. T-3.55 T, 
0.15Kl k-(0.5,0.5,0.5)n/ao ~ o.15L k-(l.lJ)nlao 

0.00 0.00 

- 0.10 0 0.10 5 
\ - - \ 

\ - 
3 \ 3 
g 0.05 \ y 0.01 \ 

\ 
\ 

0 5 10 15 0 5 10 15 

o ( m e V )  o ( m e V )  

Figure 1. S(k. U )  is displayed for two values of k a a function of o. The wave vectors, 
measured in units of (?r/aoy, correspond to the antifemmagnetic zone boundary, k = (4, 4, i), 
and lhe antiferromagnetic-ordering wave vector, k = U) = (1. I. 1): 'The temperahnre T = 
3.552. Included in the figures is a Gaussian function whose mean square width is calculated 
from the semnd-frequency moment evaluated for the spherical model, see. (5.1) and (5.2). The 
exchange parameter I = 0.29 meV, and the spin S = 2 .  

At high temperatures, physical intuition leads one to expect that spin correlations will 
be strongest at quite short distances, probed by large wave vectors. This expectation is 
borne out by the results for T = 3.552 shown in figure 1. In order to assess the influence 
of the correlations on S(k, o) for k = (4. 4, 4) and k = (1,1,1) = w, measured in units 
of (?r/q), we have included in figure 1 the function 

 no^)-'" exp(-02/bi) (5.1) 

in which w i  is the second frequency moment evaluated with the spherical model of static 
spin correlations, namely 

o m  = :(rJLLo)2S(S+ 1)(1- Yk)( l+  Vk/M){l - 1/LLOI(/LO)] (5.2) 

and I(p0) is defined in (3.3). The departures of S(k, o) from the Gaussian function are, 
indeed, most significant at the largest k. 

Antiferromagnetic correlations are not apparent in the results for T = 3.55TC inasmuch 
that departures from a Gaussian are more pronounced at w than at the antiferromagnetic 
zone boundary (i, 1. i). At the lower temperature T = 1.25TC this is no longer the case. 
Figure 2 shows that at this temperature there is slmcture in S(k, o) for k = (4, f, .i) not 
present at k = w. To illustrate the antiferromagnetic character of the structure obmned at 
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w(mcv) 

P T-1.15 T. 
k-lO.S.o.s.o.5]nls. 

0.10, 

Figure 2 S(k. fu) is shown for T = l.i.5Tc and ferromagnetic (F) and antiferromagnetic (AF) 
mupling. Note tbat k = w is the fenommetic zone boundary. Panmepm I@! a p q  from 
thesignof J ,  are thesame as in figure 1. 

. . .  . .  

k = ($, !j, 1). we have included the corresponding results for a ferromagneticgly coupli, 
system ( J  + -J  in (2.1)). For this case the ferromagnetic spin correl?ions probed at $e 
ferromagnet zone boundary k = (1, 1, l), suppoa a collective oscillation,:wit+ a relatively 
long lifetime. The changes in energy scales for S(k, w )  seen in figure 2 for different k and 
different exchange couplings can be understood from the behaviour of the. seconcfieguency 
moment (5.2); for a ferromagnetic exchange (1 + y k / h )  + (1 1 yk/&o), while all other 
factors remain the same, and PO - 1 near Tc. It is intkre+ting to note $at 'on setting 
po = 1 one finds 00" o( E;, where &y is the linear spin-wave spectrum. For feiromagnetic 
(antiferromagnetic) coupling ~k is a maximum at the zone boundary k = w(ic = ( f ,  f .  f)j. 
Hence, the relatively narrow spectrum at IC = w for an antiferromagnetic exchange couppng 
can be viewed as a signature of inkipient antiferromagnetic ordering. 

Lastly, we turn to results for T = Tc. Figure 3 shows S(k,'b) wit$ k close to &e 
zone centre and near w. The antiferromagnetic correlations near tu produce a Gak at'a 
non-zero frequency, which gradually becomes less of a feature with '&&{ng q =' k -&: 
The significant differences in S(k, w )  at k - 0 and k - w have been predictkd by Wegner 
(1969). The widths of the spectra shown in figure 3 are conshent . wia ,. the scaling 
demonstrated in section 4. Figure 4 illustrates that at Tc there are no speciaifeahues in the 
response function at the antiferromagnetic zone boundary, and the width of the spechm is 
consistent with the estimate. derived from (5.2). 

. I > "  

. ,  * . . . ,  

. .  . :  
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T- T. T- Tm 

1.20 

0.80 3 

5 
5 - 
$ 0.40 

0.00 
0 1 2 3 

U (mcV) 

0 1 2 3 

w(mcV) 

Figure 3. S(k. U)  is displayed for T = T., and k close to the Briuouin wne cenue and the 
antifenomagnetir;ordering wave vector w = (1. 1, 1). The wave vectors in units of (n/l&) 
are 1. (0,OJ); 2, (0,lJ); 3, (1,lJ); 4, (11,12,12); 5. (11,11,12) and 6, ( l l , l l , l l ) .  Other 
parameters are the same as  those used in figure 1. 

AF T=T, 
k-(0.5,0.5,0.5)n/a0 

0.10 

n 
.-, 
5 
b) 

a 0.05 
3 

U 

h 

5;: 

0.00 
0 5 10 15 

w ( m e V )  
Figure 4. The van Hove response function S(k. o) is shown for T = T,, and k = (f. f .  f), 
which is the anriferromagnetic mm boundary where the corresponding second frequency 
moment, used to calculate the Gaussian approximation to S(k. U), achieves its maximum value 
in the Brillouin wne. 
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6. Comparison with experimental data 

Experimental studies of time-dependent spin fluctuations in magnetic systems that focus on 
critical phenomena are reviewed by Cowley (1987) and Collins (1989). Of the many 
materials included in these reviews, our attention is directed to the perovskite crystal 
RbMnF3, which is an excellent example of a simple isotropic antiferromagnetic salt. Indeed, 
the Hamiltonian for RbMnF3 is probably closer to that of an ideal model that is that of any 
other magnetic system (Collins 1989). 

Table 1. Roperties of RbMnF3. 

OUantilV Svmbol Value 

Chemical unit-cell dimension 
Critical temperah& 
Nearestneighbourexchangeinteraction 
Non-universal material Constant in the 
damping rate 
Superlattice wave vector 
Oeometdcal factor (a = x, y. L) 
Number of nearest neighbours 
Soin m a ~ t n d e  

a 4.7.4 A 
T. a3 K 

a The quoted value of J and the spherical-model relation (3.4) produce a critical temperature of 
78 K. Wmdsor and Stevenson (1966) report the value J = 029 i 0.03 meV obtained from an 
analysis of the spin-wave dispersion. AU OUT results are provided as a function of the reduced 
temperature (T/Tc). and A is calculated with T. = 78 K. 

Various properties of RbMnF3 are gathered in table 1. The Mn ions are arranged on 
a simple cubic lattice, and the spin magnetic moments order antiferromagnetically below 
T, with the moments directed along the sides of the magnetic unit cells. The experimental 
studies performed by Windsor and Stevenson (1966) show that the dominant exchange 
interactions are between nearest-neighbour ions, and there is next-to-no magnetic anisotropy. 
In consequence, the magnetic properties of RbMnF3 are believed to be described by the 
Heistnberg Hamiltonian (2.1), to a very good approximation. 

In the development of magnetic neutron scattering, an early detailed study of dynamic 
spin fluctuations in critical and paramagnetic regions was performed by 'hcciarone et 
al (1971a, b) on RbMnF3. We will review and contrast their findings at T, and in the 
paramagnetic phase in the context of our findings for coupled-mode theory applied to the 
Heisenberg model (2.1). In our formulation of the coupled-mode theory we have set q = 0. 
Additionally, we have chosen to use the experimentally determined value of .I, rather than 
opt for a value such that the spherical-model Tc agrees with the observed value, cf. table 1. 

At T = T,, the width of the response function near the antiferromagnetic Bragg peak 
is found experimentally to vary with the wave vector as qz at small q. and z = 1.4 f 0.1. 
Above the critical temperature, antiferromagnetic Bragg reflections cease to exist as the 
lattice symmetry changes so as to make all sites equivalent. This means that there is no 
reason for the decay rate to go to zero as the wave vector q, measured relative to w goes to 
zero. The experiments show a dynamic response that is approximately of Lorentzian form 
at q = 0. The observed width varies with temperature according to a critical exponent of 
(1.46M.l3)w, whereas the coupled-mode theory, reported in section 4, predicts an exponent 
of zu such that z = 1.46&0.13, as shown in table 2. This value is in satisfactory agreement 
with the prediction z = i, and the experimental result obtained at T = Tc. 
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a b l e  2. A comparison of critical exponents of RbMnFa as measured by Tucciarone et nl 
(1971% b) With predictions for the isotropic Heisenberg model (after Collins 1989). 

Expanent Experiment Calculation 
Y 1.366fO.UU 1.388rt0.003 
U 0.701f0.011 0.7Wrt0.003 
tl 0.055iO.010 0.03710.009 
2% 1.46i0.13 1.5 

a The value for the dynamic critical exponent, z = 2 is obtained from the coupled-mode equalion, 
section 4, and Yso dynamic-scaling arguments and renormalization-group calculations. 

AF 

1 2 3 4 

T 
Figure 5. Widths at W area of S(k. w), examples of which are shown in figures 1, 2 and 
4. are given at three wave vectors and five reduced temperatures. The three wave vectors are 
k = w (O), k = ($, i, 9) (+) and (f, 4. 4) (A). Wave vectors are measured in units of 
(?I/%) Where 9 is the length of a side of tae (cubic) chemical unit cell. When comparing 
these results with the corresponding experimental data for RbMnFs reporled by Tucciamne et 
QI (1971a) bear in mind that these authors quote wave vectors in units of (2?1/@). 

Turning to the results of our coupled-mode theory, figure 5 shows the half areas of 
S(k, o) for three values of k and five values of (T/TJ.  Theoretical and experimental 
results (Tucciarone et ai 1971a) are in good agreement on an absolute basis. Note that 
the half area at k = w decreases as T approaches T,, while at the antiferromagnetic 
zone boundary k = ( 5 ,  5, 5 )  it increases with decreasing T .  This behaviour is in accord 
with the predicted decay rates (for a Lorentzian response function the decay rate and half 
area are the same). At Tc, we predict r(q) = q3DA'12 for pq  < 1, and the material 
parameters for RbMnF3 give the value = 19.0 meV .k312, whereas the observed half 
area of the response function for pq < 1 scales as q3/*, as already noted, and the constant 

1 1 1  
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of proportionality is 16.0 meV Ayz. This tolerable agreement between experimental and 
theoretical quantities at Tc belies a significant difference between the observed and predicted 
frequency dependences of the response function. 

At the critical temperature, the response function observed in the vicinity of w is a tbree- 
peaked function of frequency. For moderate values of q the observed function exhibits a 
central (w = 0) and two, equally displaced, side peaks ascribed to collective (spin-wave) 
excitations. A finding of the data analysis is that a three-peaked structure persists at the 
smallest wave vectors, q - 0.05 A-', although it is obscured in the data by the resolution 
of the neutron spectrometer. Turning now to our predictions for the response function at T,, 
figure 3(b) shows that near w there is no central peak, which one might associate with a spin 
diffusion process. A similar finding is reported by Wegner (1969). There is a similar, but 
less pronounced, discrepancy at the antiferromagnetic zone boundary. Looking at figure 4, 
the corresponding data reported by Tucciarone et a1 (1971a) show a well defined peak at 
about 4 meV (we refer to their corrected and symmeterized data with the non-magnetic 
background subtracted). 

7. Conclusions and discussion 

Dynamic spin correlations in an antiferromagnetically coupled Heisenberg magnet have 
been studied from the critical temperature well into the paramagnetic phase. Attention has 
been given to the spin-spin response function, or van Hove function, S(k, w). This has 
been calculated for all vectors in the Brillouin zone. The outcome of the work is the first 
comprehensive study of critical and paramagnetic spin dynamics in an antiferromagnetically 
coupled Heisenberg magnet. 

The calculations reported use the coupled-mode theory of spin dynamics. Applied to 
ferromagnetically coupled Heisenberg magnets, this theory is unmatched in its reliability, 
and range of application. Among its successes we mention correct predictions of decay rates 
(exponents and proportionality factors) at Tc and in the paramagnetic phase, and the influence 
of dipolar interactions (Frey et a1 1989, Lovesey 1993). In consequence, we have good 
reasons to be confident of the value of our reported findings for an antiferromagnetically 
coupled magnet 

By and large, there is very good agreement, on an absolute basis, between experimental 
and theoretical findings for RbMnF3. Quantities that have been directly compared include 
the dynamic critical exponent z ,  the temperature dependence of the decay rate at the 
antiferromagnetic ordering wave vector, r, and the half areas at various wave vectors 
as a function of temperature in a range from just above T, to deep in the paramagnetic 
phase. However, the positive outcome of these comparisons to some extent paints a false 
impression, for at Tc the observed and predicted spectral lines shapes in the vicinity of the 
antiferromagnetic ordering wave vector are distinctly different. The observed rhree-peaked 
structure is physically appealing, since it lends itself to an intuitive and sensible interpretation 
in t e h s  of diffusive and collective oscillatory processes. The absence in the predicted line 
shape of a central, diffusive peak, perhaps is a shortcoming of coupled-mode theory. If so, 
it is the only known significant shortcoming of coupled-mode theory applied to Heisenberg 
spin systems, and merits further experimental investigation. Bear in mind that RbMnF3, by 
all accounts, is a near-perfect example of a Heisenberg magnet. Even the ubiquitous dipolar 
interactions are irrelevant variables at z, according to a renormalization-group analysis 
(Aharony 1973). 
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Nofe added in proof. An experimental investigation of RbMnF3 reponed by Cox er a1 (1989) gives for T c Tc 
re.sults that are significantly different from those of Tucciamne er a1 (1971a) made at T.. With a small q. Cox 
et nl (1989) found a much weaker cenkal component that had an energy width comparable to the inshumtal 
resolution. More recently, Yazald et a1 (1994) reported data for T = I.2Tc. For q = 0.10 and 0.40 A-' it is 
tolerably described by a Lorentzian function of o. Using K = 0.17 A-', which is deduced from data reviewed by 
Als-Nielsen (1974)m, we find from (4.8) a width I'(0) = 1.04 meV, whereas Yanki er a1 (1994) observed r(0) = 
1.2 meV. We note that from lheii data that they deduced a larger value of K ,  namely, K = 0.22 A-'. This finding 
is coosistent with a larger value for the width since r(0) .-- K ~ P .  

References 

Ahamny A 1973 Phys. Rev. B 8 3349 
Als-Nielsen J 1974 P b e  Trmifions and Critical Phenomena vol 5% ed C Domb and M S Green (London: 

Bagnuls C and Ioukoff-Piene C 1975 Phys. Rev. B 11 1986 
Collins M F 1989 Mngneric Critical Scmering (New York Oxford University P m )  
Cowley R A 1987 Mefhods of Erperimenfnl Phy3ics vol23 (Orlando, n: Academic) p a t  C 
Cox U 1, Cowley R A, Bates S and Cussen L D 1989 J. Phys.: Condenr. Maner 1 3031 
Cuccoli A, Tognem V and Lovesey S W 1989 Phys. Rev. B 39 2619 
- I990 1. Phys.: Condens. Mnner 2 3339 
Frey E, Schwabl F and Thoma S 1989 Phys. Rev. B 40 7199 
Hubbard J 1971 A Php.  C: Solid Sfate Phys. 4 53 
Hubbard J private communication 
Huber D L and Kmeger D A 1970 Phys. Rev. Lett 24 11 1 
Kawasaki K 1970 A m .  Phy5. (N.Y.) 61 1 
Lovesey S W 1986 Condensed Mater  Physics: D y m i c  Correlntions (Fmnriers in Physics 60) (New York 

- 1993 1. Phys.: Condens. Mnner 5 L251 
Lovesey S W and Balm E 1994 1. Phys.: Condens. Mmer 6 1253 
Marshall W and Lowde R D 1968 Rep. Prog. Phys. B 31 705 
F ' r i v m  V, Hohenberg P C and Aharony A 1990 P b e  Trrmritions and Criricol Phenomena vol 14, ed C Domb 

Resibis P and De k n e r  M 1969 Phys. Rev. 178 806, 819 
Srivwava N, Liu I-M, V i a n a t h  V S and Miller G A 1994 Appl. Phys. at press 
Tucciamne A, Corliss L M and Hastings J M 1971a 1. AppL Phys. 42 1378 
Tucciamne A, Lau H Y. Corliss L M, Delapalme and Hastings J M 1971b Phys. Rev. B 4 3206 
Weguer F 1969 Z Phys. 218 260 
Westhead D R. Cuccoli A. Lovesey S Wand Tognetti V 1991 1. Phys.: Condens. Maner 3 5235 
Windsor C G and Stevenson R W H 1966 Prac. Phys. Soc. 87 501 
Ya?aki A, Tajima K, Todate Y, Tomiyoshi S and Re& H 1994 1. Phys. Soc. Jopm 63 748 

Academic) 

BenjamidCummings) 

and J L Lebowitz (London: Academic) 


